beta(1) Receptors protect the renal afferent arteriole of angiotensin-infused rabbits from norepinephrine-induced oxidative stress.
نویسندگان
چکیده
Renal afferent arterioles (Aff) from angiotensin II (AngII)-infused rabbits have enhanced contractions to AngII that are normalized by tempol (superoxide dismutase mimetic), whereas contractions to norepinephrine (NE) are normal and unaffected by tempol. Tested was the hypothesis that beta-receptor stimulation with NE prevents enhanced reactivity and superoxide generation. Preconstricted Aff from AngII- or vehicle-infused rabbits were perfused at physiologic pressure. Aff from vehicle-infused rabbits had strong, endothelium-independent relaxations to dobutamine (beta(1)-receptor agonist; 78 +/- 6%; P < 0.0001; mean +/- SD) but only weak relaxations to salbutamol (beta(2)-receptor agonist; 13 +/- 3%; P < 0.05) or BRL-37,344 (beta(3)-receptor agonist; 14 +/- 3%; P < 0.05). Contractions to NE were similar in Aff from vehicle- and AngII-infused rabbits (-36 +/- 5 versus -34 +/- 3%; NS) and were unaffected by tempol (-32 +/- 4%; NS). In contrast, phenylephrine contractions (alpha(1) agonist) were enhanced in Aff from AngII-infused rabbits (-59 +/- 6 versus -46 +/- 4%; P < 0.05) and normalized by tempol. NE contractions in Aff from AngII-infused rabbits (-34 +/- 4%) were enhanced (P < 0.01) by propranolol (nonselective beta antagonist; -53 +/- 6%), CGP-20,712A (selective beta(1)-receptor antagonist; -61 +/- 9%), or Rp-cAMP (competitive inhibitor of cAMP; -56 +/- 4%); were normalized by tempol; but were unaffected by ICI-118,551 (selective beta(2)-receptor antagonist) or SR-59,230A (selective beta(3)-receptor antagonist). Superoxide generation in Aff from AngII-infused rabbits that were assessed from ethidium:dihydroethidium was enhanced by addition of CGP-20,712A to NE but was normalized by tempol. Aff have robust alpha(1)-receptor contraction and beta(1)-receptor dilation. NE elicits beta(1) signaling via cAMP that moderates oxidative stress and contractions in Aff from AngII-infused rabbits.
منابع مشابه
Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II.
The hypothesis that O(2)(.-) enhances angiotensin II (AngII)-induced vasoconstriction and impairs acetylcholine-induced vasodilation of afferent arterioles (Aff) in AngII-induced hypertension was investigated. Rabbits (n = 6 per group) received 12 to 14 d of 0.154 M NaCl (Sham), subpressor AngII (60 ng/kg per min; AngII 60) or slow pressor AngII (200 ng/kg per min; AngII 200). Individual Aff we...
متن کاملEnhanced contractility of renal afferent arterioles from angiotensin-infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium.
We tested the hypothesis that cyclooxygenase (COX), thromboxane A2 synthase (TxA2-S), thromboxane prostanoid receptors (TP-Rs), or superoxide anion (O2-) mediates enhanced contractions of renal afferent arterioles (Aff) of angiotensin II (Ang II)-infused rabbits. Rabbits were infused with vehicle (sham), Ang II 60 ng x kg(-1) x min(-1) (Ang II 60) or 200 ng x kg(-1) x min(-1) (Ang II 200). Ther...
متن کاملVasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles.
Recent studies have shown that angiotensin-(1-7) (Ang-[1-7]), which is generated endogenously from both Ang I and II, is a bioactive component of the renin-angiotensin system and may play an important role in the regulation of blood pressure. However, little is known about its role in regulating the reactivity of the afferent arteriole or the mechanism(s) involved. We hypothesized that Ang-(1-7...
متن کاملContribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice.
The present studies were performed to determine the contribution of EP(2) receptors to renal hemodynamics by examining afferent arteriolar responses to PGE(2), butaprost, sulprostone, and endothelin-1 in EP(2) receptor-deficient male mice (EP(2)-/-). Afferent arteriolar diameters averaged 17.8 +/- 0.8 microm in wild-type (EP(2)+/+) mice and 16.7 +/- 0.7 microm in EP(2)-/- mice at a renal perfus...
متن کاملAdenosine A₁-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment.
Adenosine mediates tubuloglomerular feedback responses via activation of A(1)-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A(1)-receptor knockout (A(1)(-/-)) and wild-type (A(1)(+/+)) mice we investigated the hypoth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2006